Color-Swap Models for Non-growing Scale-free Networks

Tomas Hruz, Madhuresh Agrawal and Michal Natora

June 2008
The Overall Picture
The edge-colored class of models

Introduction
The color-swap model
Simulation Results
Towards analytical solution
Conclusion

Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:
- orientation
- +/-
- connection strength (capacity, flow)
- color
Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion

The Overall Picture

The edge-colored class of models

▶ Almost every second picture of complex network you have seen on this conference has colored edges.

▶ The researchers start to investigate the relations between different networks constituted by different types of links.

▶ Example: nodes are companies, blue connection means a business, red means a board of directors relation.

▶ The rules which relate the different networks (colors) on the microscopic level.

▶ Colors can expand our modeling possibilities:
 - orientation
 - +/−
 - connection strength (capacity, flow)
 - color
The Overall Picture

The edge-colored class of models

Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion

Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:

- orientation
- +/-
- connection strength (capacity, flow)
- color
Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:

- orientation
- +/-
- connection strength (capacity, flow)
- color
Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:
- orientation
- +/-
- connection strength (capacity, flow)
- color
The Overall Picture
The edge-colored class of models

Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:
- orientation
- +/-
- connection strength (capacity, flow)
- color
Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:

- orientation
- +/−
- connection strength (capacity, flow)
- color
Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:

- orientation
- +/-
- connection strength (capacity, flow)
- color
Almost every second picture of complex network you have seen on this conference has colored edges.

The researchers start to investigate the relations between different networks constituted by different types of links.

Example: nodes are companies, blue connection means a business, red means a board of directors relation.

The rules which relate the different networks (colors) on the microscopic level.

Colors can expand our modeling possibilities:

- orientation
- +/-
- connection strength (capacity, flow)
- color
The Overall Picture
The edge-colored class of models

Introduction
The color-swap model
Simulation
Results
Towards analytical solution
Conclusion

- Almost every second picture of complex network you have seen on this conference has colored edges.
- The researchers start to investigate the relations between different networks constituted by different types of links.
- Example: nodes are companies, blue connection means a business, red means a board of directors relation.
- The rules which relate the different networks (colors) on the microscopic level.
- Colors can expand our modeling possibilities:
 - orientation
 - +/-
 - connection strength (capacity, flow)
 - color
The Overall Picture
The edge-colored class of models

- Almost every second picture of complex network you have seen on this conference has colored edges.
- The researchers start to investigate the relations between different networks constituted by different types of links.
- Example: nodes are companies, blue connection means a business, red means a board of directors relation.
- The rules which relate the different networks (colors) on the microscopic level.
- Colors can expand our modeling possibilities:
 - orientation
 - +/-
 - connection strength (capacity, flow)
 - color
The Overall Picture
The edge-colored class of models

- Almost every second picture of complex network you have seen on this conference has colored edges.
- The researchers start to investigate the relations between different networks constituted by different types of links.
- Example: nodes are companies, blue connection means a business, red means a board of directors relation.
- The rules which relate the different networks (colors) on the microscopic level.
- Colors can expand our modeling possibilities:
 - orientation
 - +/-
 - connection strength (capacity, flow)
 - color
Outline

Introduction

The color-swap model

Simulation Results

Towards analytical solution

Conclusion
Motivation

Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics

- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.

- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation

Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics

- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.

- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation

Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics
- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.
- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation
Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics
- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.
- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation
Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics

- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.

- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation

Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics

- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.

- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation
Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics

- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.

- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation

Biological Networks

- Interdisciplinary ETH project Genevestigator
 - Biology
 - Computer Science
 - Physics
- Genevestigator contains large high quality database of gene expression data. We have two complex network models in Genevestigator
 - Biochemical reaction pathways. The nodes represent biochemical reactions and the edges the reaction inputs and outputs. We have 5 types of edges (edge colors) for metabolites, enzymes, stimuli, cofactors and effects.
 - Gene correlation (control) network. The nodes are genes, and the edges represent regulatory relations between the genes.
- We are also starting a cooperation with mobile operators to investigate the structure and evolution of the mobile call networks
Motivation
Non-growing networks

We focus on non-growing networks
- The main interest is not how the networks were created but more how they operate and change mainly in the sense of rewiring the links between the nodes.
- We measured our metabolic networks and they are scale free.
- The size of the networks is moderate: metabolic pathways has about 4000 nodes, 12000 edges and gene regulation network has about 10^4 nodes.
Motivation
Non-growing networks

- We focus on non-growing networks
 - The main interest is not how the networks were created but more how they operate and change mainly in the sense of rewiring the links between the nodes.
 - We measured our metabolic networks and they are scale free.
 - The size of the networks is moderate: metabolic pathways has about 4000 nodes, 12000 edges and gene regulation network has about 10^4 nodes.
Motivation
Non-growing networks

We focus on non-growing networks

The main interest is not how the networks were created but more how they operate and change mainly in the sense of rewiring the links between the nodes.

We measured our metabolic networks and they are scale free.

The size of the networks is moderate: metabolic pathways has about 4000 nodes, 12000 edges and gene regulation network has about 10^4 nodes.
Motivation
Non-growing networks

We focus on non-growing networks

- The main interest is not how the networks were created but more how they operate and change mainly in the sense of rewiring the links between the nodes.
- We measured our metabolic networks and they are scale free.
- The size of the networks is moderate: metabolic pathways has about 4000 nodes, 12000 edges and gene regulation network has about 10^4 nodes.
The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 - 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
Motivation

The model

The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 - 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
Motivation
The model

The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 \text{ - } 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 - 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
Motivation
The model

The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 - 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
The model we are looking for must have the following features:

1. It must achieve a stable scale-free state.
2. The number of edges must be constant or bounded in a small interval.
3. The network should not condensate even if the size and the number of edges is moderate $10^3 - 10^4$.
4. There should not be structural constraints, like for example constant out-going degree.
5. The stochastic process must stay in the class of simple graphs - no multiple edges and self-loops.
Color-swap model

Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion

Edge-colored complete graph with \(\binom{N}{2} \) edges.

The simple model has three colors: black, blue and red.

Black edges: non-edges - no connection (not shown).

Blue edges: the real connections.

Red edges: potential connections.

The only allowed operation is an exchange of color between the edges.
The color-swap model

Introduction

The edge-colored complete graph with $\binom{N}{2}$ edges.

The simple model has three colors: black, blue and red.

Black edges: non-edges - no connection (not shown).

Blue edges: the real connections.

Red edges: potential connections.

The only allowed operation is an exchange of color between the edges.
Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion

Edge-colored complete graph with $\binom{N}{2}$ edges.

The simple model has three colors: black, blue and red.

Black edges: non-edges - no connection (not shown).

Blue edges: the real connections.

Red edges: potential connections.

The only allowed operation is an exchange of color between the edges.
The color-swap model

Introduction

The color-swap model is an edge-colored complete graph with \(\binom{N}{2} \) edges.

- The simple model has three colors: black, blue, and red.
- Black edges: non-edges - no connection (not shown).
- Blue edges: the real connections.
- Red edges: potential connections.
- The only allowed operation is an exchange of color between the edges.
Introduction

The color-swap model

Simulation
Results
Towards analytical solution
Conclusion

Edge-colored complete graph with \(\binom{N}{2} \) edges.

The simple model has three colors: black, blue and red.

Black edges: non-edges - no connection (not shown).

Blue edges: the real connections.

Red edges: potential connections.

The only allowed operation is an exchange of color between the edges.
Introduction

The color-swap model

Simulation

Results

Towards an analytical solution

Conclusion

- Edge-colored complete graph with \(\binom{N}{2}\) edges.
- The simple model has three colors: black, blue and red.
- Black edges: non-edges - no connection (not shown).
- Blue edges: the real connections.
- Red edges: potential connections.
- The only allowed operation is an exchange of color between the edges.
Color-swap model

Introduction

- Edge-colored complete graph with $\binom{N}{2}$ edges.
- The simple model has three colors: black, blue and red.
- Black edges: non-edges - no connection (not shown).
- Blue edges: the real connections.
- Red edges: potential connections.

- The only allowed operation is an exchange of color between the edges.
Introduction

The color-swap model

Introduction

Edge-colored complete graph with \(\binom{N}{2} \) edges.

The simple model has three colors: black, blue and red.

Black edges: non-edges - no connection (not shown).

Blue edges: the real connections.

Red edges: potential connections.

The only allowed operation is an exchange of color between the edges.
Color-swap model

Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion

- Edge-colored complete graph with $\binom{N}{2}$ edges.
- The simple model has three colors: black, blue and red.
- Black edges: non-edges - no connection (not shown).
- Blue edges: the real connections.
- Red edges: potential connections.
- The only allowed operation is an exchange of color between the edges.
Color-swap model

Color-swap process

- Initial condition.
- Blue Rewiring Phase: Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.
- Red Rewiring Phase: Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.

Introduction

The color-swap model

Simulation Results

Towards analytical solution

Conclusion
The color-swap model

Color-swap process

(a) Initial condition.

Blue Rewiring Phase: Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.

(b) Red Rewiring Phase: Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.
Color-swap model

Color-swap process

- **Initial condition.**
- **Blue Rewiring Phase:** Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.
- **Red Rewiring Phase:** Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.

(a)

(b)
Color-swap model

Color-swap process

Initial condition.

Blue Rewiring Phase: Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.

Red Rewiring Phase: Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.

Introduction

The color-swap model

Simulation

Results

Towards analytical solution

Conclusion
The color-swap model

Color-swap process

Introduction

The color-swap model

Simulation Results

Towards analytical solution

Conclusion

Color-swap model

Color-swap process

Initial condition.

Blue Rewiring Phase: Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.

Red Rewiring Phase: Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.
Color-swap model

Color-swap process

- **Initial condition.**
- **Blue Rewiring Phase:** Uniformly at random select two nodes V_i and $V_j \neq V_i$. For each blue neighbor V_k of V_j swap the edge.
- **Red Rewiring Phase:** Select a vertex V_l with a blue linear preference. Uniformly at random select a blue edge E_b incident on it and swap it with an uniformly at random chosen red edge E_r.
Simulation Results
The degree distribution

Color-Swap

![Log-log plot of degree distribution](image)

- Introduction
- The color-swap model
- Simulation Results
- Towards analytical solution
- Conclusion
Simulation Results

Discussion

Parameters used: \(N = 100000, L_{\text{blue}} = L_{\text{red}} = 300000 \), thus \(L_{\text{blue}} \ll L_{\text{black}} \).

- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
- Number of edges (blue, red) is constant.
- The process naturally stays in the class of simple graphs.
- There is a fluctuation on the degree of certain nodes.
Simulation Results

Discussion

Parameters used: \(N = 100000, L_{\text{blue}} = L_{\text{red}} = 300000 \), thus \(L_{\text{blue}} \ll L_{\text{black}} \).

- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
- Number of edges (blue, red) is constant.
- The process naturally stays in the class of simple graphs.
- There is a fluctuation on the degree of certain nodes.
Simulation Results

Discussion

- Parameters used: $N = 100000$, $L_{\text{blue}} = L_{\text{red}} = 300000$, thus $L_{\text{blue}} \ll L_{\text{black}}$.
- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
 - Number of edges (blue, red) is constant.
 - The process naturally stays in the class of simple graphs.
 - There is a fluctuation on the degree of certain nodes.
Simulation Results

Discussion

- Parameters used: \(N = 100000, L_{\text{blue}} = L_{\text{red}} = 300000 \), thus \(L_{\text{blue}} \ll L_{\text{black}} \).
- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
- Number of edges (blue, red) is constant.
- The process naturally stays in the class of simple graphs.
- There is a fluctuation on the degree of certain nodes.
Simulation Results

Discussion

- Parameters used: \(N = 100000, L_{\text{blue}} = L_{\text{red}} = 300000 \), thus \(L_{\text{blue}} \ll L_{\text{black}} \).
- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
- Number of edges (blue, red) is constant.
- The process naturally stays in the class of simple graphs.
- There is a fluctuation on the degree of certain nodes.
Simulation Results

Discussion

- Parameters used: $N = 100000$, $L_{blue} = L_{red} = 300000$, thus $L_{blue} \ll L_{black}$.
- Stable scale-free distribution, even for small networks.
- No structural constraints on in/out degree.
- Number of edges (blue, red) is constant.
- The process naturally stays in the class of simple graphs.
- There is a fluctuation on the degree of certain nodes.
Towards analytical solution

Introduction

- Interest in small networks.
- Simple graphs in our applications.
- Study of simple graph constraints on the most simple process.
- Simple Graph Edge Selection Process - SGESP
Towards analytical solution

Introduction

- Interest in small networks.
- Simple graphs in our applications.
- Study of simple graph constraints on the most simple process.
- Simple Graph Edge Selection Process - SGESP
Towards analytical solution

Introduction

- Interest in small networks.
- Simple graphs in our applications.
- Study of simple graph constraints on the most simple process.
- Simple Graph Edge Selection Process - SGESP
Towards analytical solution

Introduction

- Interest in small networks.
- Simple graphs in our applications.
- Study of simple graph constraints on the most simple process.
- Simple Graph Edge Selection Process - SGESP
Towards analytical solution

Simple Graph Edge Selection Process

- Select an edge uniformly randomly, select an end node \(v_i \) randomly
- Select a node \(v_l \) preferentially with probability \(\frac{f(k)}{N(f)} \)
- If(no edge between \(v_l \) and \(v_j \))
 - Rewire from \(v_l \) to \(v_j \)
Towards analytical solution
Simple Graph Edge Selection Process

▶ Select an edge uniformly randomly, select an end node \(v_i \) randomly
 ▶ Select a node \(v_l \) preferentially with probability \(\frac{f(k)}{N(f)} \)
 ▶ If(no edge between \(v_l \) and \(v_j \))
 ▶ Rewire from \(v_j \) to \(v_l \)
Towards analytical solution
Simple Graph Edge Selection Process

락스 - 벡터
소도 - 노드
심플 그래프 간선 선별 과정

- Select an edge uniformly randomly, select an end node \(v_i \) randomly
- Select a node \(v_i \) preferentially with probability \(\frac{f(k)}{\langle f \rangle} \)
- If(no edge between \(v_i \) and \(v_j \))
Towards analytical solution
Simple Graph Edge Selection Process

- Select an edge uniformly randomly, select an end node v_i randomly
- Select a node v_l preferentially with probability $\frac{f(k)}{N\langle f \rangle}$
- If (no edge between v_l and v_j)
 - Rewire from v_i to v_l
Towards analytical solution

Simple Graph Edge Selection Process

- Select an edge uniformly randomly, select an end node v_i randomly
- Select a node v_l preferentially with probability $\frac{f(k)}{N\langle f \rangle}$
- If (no edge between v_l and v_j)
 - Rewire from v_i to v_l
Hierarchy of Object Distributions

\[P(k, k') \sim \frac{L(k, k')}{L} \]

- \(N(1) = 1, N(2) = 3, N(3) = 1 \)
- Left graph: \(L(1, 2) = 1, L(2, 2) = 1, L(2, 3) = 3 \), right graph: \(L(2, 2) = 2, L(1, 3) = 1, L(2, 3) = 2 \)
- \[P(k) = \frac{\bar{k}}{k} \sum_{k'} P(k, k') \]
Hierarchy of Object Distributions

\[P(k, k') \sim \frac{L(k, k')}{L} \]

- \(N(1) = 1, N(2) = 3, N(3) = 1 \)
- Left graph: \(L(1, 2) = 1, L(2, 2) = 1, L(2, 3) = 3 \), right graph: \(L(2, 2) = 2, L(1, 3) = 1, L(2, 3) = 2 \)
- \(P(k) = \frac{k}{\bar{k}} \sum_{k'} P(k, k') \)
Hierarchy of Object Distributions

\[P(k, k') \sim \frac{L(k, k')}{L} \]

\[\begin{align*}
N(1) &= 1, \quad N(2) = 3, \quad N(3) = 1 \\
\text{Left graph: } L(1, 2) &= 1, \quad L(2, 2) = 1, \quad L(2, 3) = 3, \\
\text{right graph: } L(2, 2) &= 2, \quad L(1, 3) = 1, \quad L(2, 3) = 2 \\
\end{align*} \]

\[P(k) = \frac{\bar{k}}{k} \sum_{k'} P(k, k') \]
Hierarchy of Object Distributions
Why we need more complex objects

- \(N(1) = 2, N(2) = 2, N(3) = 2 \)
- \(L(1, 3) = 2, L(2, 2) = 1, L(2, 3) = 2, L(3, 3) = 1 \)
- but \(N_L(1, 3) = 3 \) and \(N_R(1, 3) = 4 \)
Hierarchy of Object Distributions
Why we need more complex objects

- $N(1) = 2$, $N(2) = 2$, $N(3) = 2$
- $L(1, 3) = 2$, $L(2, 2) = 1$, $L(2, 3) = 2$, $L(3, 3) = 1$
- but $N_L(1, 3) = 3$ and $N_R(1, 3) = 4$
Hierarch of Object Distributions
Why we need more complex objects

- \(N(1) = 2, N(2) = 2, N(3) = 2 \)
- \(L(1, 3) = 2, L(2, 2) = 1, L(2, 3) = 2, L(3, 3) = 1 \)
- but \(N_L(1, 3) = 3 \) and \(N_R(1, 3) = 4 \)
Hierarchy of Object Distributions

\[P(k, k', k'') \sim W(k, k', k'') / W \]

- \(N(k), L(k, k') \) are equal
- Left graph:
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 1) = 1 \]
- and right graph:
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 2) = 2 \]
- \[P(k, k') = \sqrt{2}LC_0 \frac{\sum_P(k, k', k'') + P(k'', k, k')}{k + k' - 2} \]
Hierarchy of Object Distributions

\(P(k, k', k'') \sim W(k, k', k'') / W \)

- \(N(k), L(k, k') \) are equal
- Left graph:
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 1) = 1 \]
 and right graph:
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 2) = 2 \]
- \(P(k, k') = \sqrt{2LC_0} \frac{\sum_{k''} P(k', k'', k'') + P(k'', k, k')}{k + k' - 2} \)
Hierarchy of Object Distributions

\[P(k, k', k'') \sim \frac{W(k, k', k'')}{W} \]

1. **N(k), L(k, k') are equal**
2. **Left graph:**
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 1) = 1 \]

3. **Right graph:**
 \[W(2, 2, 3) = 2, \ W(2, 3, 3) = 2, \ W(1, 3, 3) = 2, \ W(1, 3, 2) = 2 \]

4. **P(k, k')**
 \[P(k, k') = \sqrt{2LC_0} \sum_{k''} \frac{P(k, k', k'') + P(k'', k, k')}{k + k' - 2} \]
Simple Graph Edge Selection Process

- Wedges are enough to analytically express the conditional flow in the process

\[P(k', k'') \frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''}) \times (1 - P_{k''',(k'',k')}) \]

- \(P(k', k'') \) is the probability that vertex \(V_i \) is of degree \(k' \) and it has a direct neighbor vertex \(V_j \) of degree \(k'' \)

- \(\frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''}) \) is the probability that vertex \(V_i \), which is selected with a probability proportional to \(f(k) \), is of degree \(k'''' \) and is not a part of the edge \(E_i \)

- \((1 - P_{k''',(k'',k')}) \) is equal to the probability that there is no edge between \(V_i \) and \(V_j \)

\[P_{k,(k',k'')} = \frac{2W \cdot P(k,k',k'')}{(N(k)-\delta_{k',k'}-\delta_{k,k''})L(k',k'')} \]
Simple Graph Edge Selection Process

Configuration term

- Wedges are enough to analytically express the conditional flow in the process

\[P(k', k'') \frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''', k'} - \delta_{k''', k''}) \times (1 - P_{k''', (k'', k')}) \]

- \(P(k', k'') \) is the probability that vertex \(V_i \) is of degree \(k' \) and it has a direct neighbor vertex \(V_j \) of degree \(k'' \)

- \(\frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''', k'} - \delta_{k''', k''}) \) is the probability that vertex \(V_l \), which is selected with a probability proportional to \(f(k) \), is of degree \(k''' \) and is not a part of the edge \(E_i \)

- \((1 - P_{k''', (k'', k')}) \) is equal to the probability that there is no edge between \(V_i \) and \(V_j \)

\[P_{k,(k',k'')} = \frac{2W \cdot P(k,k',k'')}{(N(k)-\delta_{k,k'}-\delta_{k,k''})L(k',k'')} \]
Wedges are enough to analytically express the conditional flow in the process

\[P(k', k'') \frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''}) \times (1 - P_{k''',(k'',k')}) \]

- \(P(k', k'') \) is the probability that vertex \(V_i \) is of degree \(k' \) and it has a direct neighbor vertex \(V_j \) of degree \(k'' \)
- \(\frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''}) \) is the probability that vertex \(V_i \), which is selected with a probability proportional to \(f(k) \), is of degree \(k''' \) and is not a part of the edge \(E_i \)
- \((1 - P_{k''',(k'',k')}) \) is equal to the probability that there is no edge between \(V_i \) and \(V_j \)

\[P_{k,(k',k'')} = \frac{2W \cdot P(k,k',k'')}{(N(k)-\delta_{k,k'}-\delta_{k,k''})L(k',k'')} \]
Wedges are enough to analytically express the conditional flow in the process

$P(k', k'') \frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''}) \times (1 - P_{k''',(k'',k')})$

- $P(k', k'')$ is the probability that vertex V_i is of degree k' and it has a direct neighbor vertex V_j of degree k''
- $\frac{f(k''')}{N(f(k))} (N(k''') - \delta_{k''',k'} - \delta_{k''',k''})$ is the probability that vertex V_l, which is selected with a probability proportional to $f(k)$, is of degree k''' and is not a part of the edge E_i
- $(1 - P_{k''',(k'',k')})$ is equal to the probability that there is no edge between V_i and V_j

$P_{k,(k',k'')} = \frac{2W \cdot P(k,k',k'')}{(N(k)-\delta_{k,k'}-\delta_{k,k''})L(k',k'')}$
Simple Graph Edge Selection Process

Configuration term

- Wedges are enough to analytically express the conditional flow in the process

\[P(k', k'') \frac{f(k''')}{N\langle f(k) \rangle} (N(k''') - \delta_{k''', k'} - \delta_{k''', k''}) \times (1 - P_{k''', (k'', k')}) \]

- \(P(k', k'') \) is the probability that vertex \(V_i \) is of degree \(k' \) and it has a direct neighbor vertex \(V_j \) of degree \(k'' \)

- \(\frac{f(k''')}{N\langle f(k) \rangle} (N(k''') - \delta_{k''', k'} - \delta_{k''', k''}) \) is the probability that vertex \(V_l \), which is selected with a probability proportional to \(f(k) \), is of degree \(k''' \) and is not a part of the edge \(E_i \)

- \((1 - P_{k''', (k'', k')}) \) is equal to the probability that there is no edge between \(V_i \) and \(V_j \)

\[P_{k, (k', k'')} = \frac{2W \cdot P(k, k', k'')}{(N(k) - \delta_{k, k'} - \delta_{k, k''})L(k', k'')} \]
Simple Graph Edge Selection Process

Configuration term

- Wedges are enough to analytically express the conditional flow in the process

- \(P(k', k'') \cdot \frac{f(k''')}{N(f(k))} \left(N(k''') - \delta_{k''', k'} - \delta_{k''', k''} \right) \times \left(1 - P_{k''', (k'', k')} \right) \)
 - \(P(k', k'') \) is the probability that vertex \(V_i \) is of degree \(k' \) and it has a direct neighbor vertex \(V_j \) of degree \(k'' \)
 - \(\frac{f(k''')}{N(f(k))} \left(N(k''') - \delta_{k''', k'} - \delta_{k''', k''} \right) \) is the probability that vertex \(V_{l} \), which is selected with a probability proportional to \(f(k) \), is of degree \(k'''' \) and is not a part of the edge \(E_{i} \)
 - \((1 - P_{k''', (k'', k')} \) is equal to the probability that there is no edge between \(V_i \) and \(V_j \)

- \(P_{k,(k',k'')} = \frac{2W \cdot P(k,k',k'')}{(N(k) - \delta_{k,k'} - \delta_{k,k''})L(k',k'')} \)
Simple Graph Edge Selection Process

Master equation

\[N(k, t + 1) = \]
\[N(k) - \sum_{k', k''} P(k', k'') \frac{f(k)(N(k) - \delta_{k, k'} - \delta_{k', k''})}{N\langle f \rangle} (1 - P_{k,(k',k'')}) + \]
\[\sum_{k', k''} P(k', k'') \frac{f(k-1)(N(k-1) - \delta_{k-1, k'} - \delta_{k', k''})}{N\langle f \rangle} (1 - P_{k-1,(k',k'')}) - \]
\[\sum_{k', k'''} P(k', k) \frac{f(k''')(N(k''') - \delta_{k''', k'} - \delta_{k', k'''}k)}{N\langle f \rangle} (1 - P_{k''',(k',k)}) + \]
\[\sum_{k', k'''} P(k', k + 1) \frac{f(k''')(N(k''') - \delta_{k''', k'} - \delta_{k', k'''}k+1)}{N\langle f \rangle} (1 - P_{k''',(k',k+1)}) \]

\[P(k, t + 1) = P(k) + F(P(k, t), P(k, k', t), P(k, k', k'', t)) \]
Simple Graph Edge Selection Process

Master equation

\[N(k, t + 1) = N(k) - \sum_{k', k''} P(k', k'') \frac{f(k)(N(k) - \delta_{k,k'} - \delta_{k,k''})}{N\langle f \rangle} (1 - P_{k,(k',k'')}) + \]

\[\sum_{k', k''} P(k', k'') \frac{f(k-1)(N(k-1) - \delta_{k-1,k'} - \delta_{k-1,k''})}{N\langle f \rangle} (1 - P_{k-1,(k',k'')}) - \]

\[\sum_{k', k'''} P(k', k) \frac{f(k''')(N(k''') - \delta_{k''',k'} - \delta_{k''',k})}{N\langle f \rangle} (1 - P_{k''',(k',k)}) + \]

\[\sum_{k', k'''} P(k', k + 1) \frac{f(k''')(N(k''') - \delta_{k''',k'} - \delta_{k''',k+1})}{N\langle f \rangle} (1 - P_{k''',(k',k+1)}) \]

\[P(k, t + 1) = P(k) + F(P(k, t), P(k, k', t), P(k, k', k'', t)) \]
Hierarchy of object distributions
Higher level objects

Conclusion

- Edge-colored class of models can be interesting option for some applications.
- The particular processes would need more research to improve and understand their behavior.
- The analytical solution can be very hard if the simple graph constraints are implicitly included.
Conclusion

- Edge-colored class of models can be interesting option for some applications.
- The particular processes would need more research to improve and understand their behavior.
- The analytical solution can be very hard if the simple graph constraints are implicitly included.
Conclusion

- Edge-colored class of models can be interesting option for some applications.
- The particular processes would need more research to improve and understand their behavior.
- The analytical solution can be very hard if the simple graph constraints are implicitly included.